
Preferred ways to demonstrate (aerosol) forcing skill in global modeling are comparisons in aerosol optical depth to data from ground and space. Comparisons among component models demonstrate strong differences already at the aerosol sub-component level. Thus, agreement in component combined aerosol optical depth may say little about modeling skill. Are 'good' aot totals skillful, just luck (offsetting errors) or a matter of tuning? Investigations of detailed aerosol output of control experiments as proposed in AEROCOM will tell.

Stefan Kinne and Authors MPI for Meteorology, Hamburg, Germany

Models	Resolution	Simulatio	n Authors
+ LO LOA	3.75/2.5deg	yr 2000	Reddy / Boucher
LS LSCE	3.75/2.5deg	yr 2000	Hauglustine /Schulz
UL ULAQ	10/22.5deg	yr 2000	Pitari / Montenaro
SP SPRINTARS	1.3/1.3deg	yr 2000	Takemura
CA CANADA	2.8/2.8deg	1yr avg	Gong
MI MIRAGE	2.5/2.0deg	yr 2000	Ghan / Easter
NF NCAR-Match	1.9/1.9deg	yr 2000	Fillmore / Collins
NM NCAR-Mozart	2.8/2.8deg	1yr avg	Tie / Brasseur
 OT OSLO 	1.9/1.9deg	yr 1996	Myhrne /Isaksen
IM IMPACT	2.5/2.0deg	3yr avg	Liu/ Penner
EH ECHAM5	2.8/2.8deg	3yr avg	Stier / Feichter
EL ECHAM4	3.8/3.8deg	3yr avg	Lohmann /Feichter
IM IMPACT	5.0/5.0deg	1yr avg	Herzog / Penner
GO GOCART	2.0/2.5deg	yr 2000	Chin / Ginoux
GR GRANTOUR	5.0/5.0deg	1yr avg	Herzog / Penner
 GI GISS 	4.0/5.0deg	3yr avg	Koch / Tegen
HA HADAM4	2.5/3.8deg	5yr avg	Roberts / Jones
EM ECHAM4	3.8/3.8deg	3yr avg	Hendricks /Sausen

AEROSOL MASS

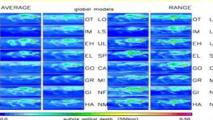
	0.0	sulfate mass (g/m2)	0.05
	AVERAGE	global models	RANGE
	LO	OT LO	то
2	LS	IM LS	MI STATE
org.	UL	EH UL BOOT	EH
	sp 😪	EL SP	E
ä	CA	GO CA	GO GO
carbon	мі	GR MI	GR
Ō	NF	GI NF	GI
	NM	HA NM	HA

	AVERAGE			global models			RANGE	
_	LO		1	OT LO		-	01	
0	LS	1. T. C.		IM LS	~ ~ ~	1	IN	
black	UL			EH UL	- 010	Service -	E	
×	SP	-		EL SP		-	E	
Ω.	CA	1.00	1.00	GO CA		-	G	
carbo	мі			GR MI	18 M		G	
ğ	NF		-	GI NF		-	G	
2	NM	1000	-	HA NM	1.2.2		H	

	AVERAGE		
	LO	OT LO	то
	LS	IM LS	IM IN
S	บเ	EH UL	EH
sea-salt	SP	EL SP	EL.
2	CA	GO CA	co
ä	мі		GR
-	NF	GI NF	GI
	NM	HA NM	HA

	AVERAGE	global models	RANGE
	LO	OT LO	от
	LS	IM LS	IM
	UL	EH UL	EH
Q	SP	EL SP	EL.
dust	CA	GO CA	GO
¥	мі	GR MI	GR
	NF	GI NF	GI
	NM	HA NM	HA

	0.0	ubar musa (g/ma)	1,00
	AVERAGE	global models	RANGE
	LO	OT LO	TO COL
0	LS	IM LS	
2	UL	EH UL	EH
oc/bc ratio	SP	EL SP	EL.
2	CA	GO CA	GO
aj	MI	GR MI	GR
E	NF	GI NF	GI
Ŭ	NM	EM NM	EM


Simulated aerosol components

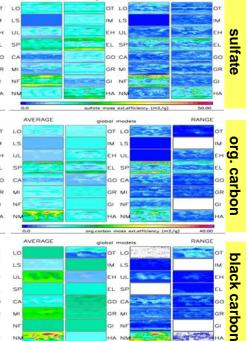
global fields of yearly averages and monthly range

Human activity has increased atmospheric concentrations of greenhouse gases and aerosol. Our understanding of assocaited climatic impact is largely based on global modeling. And uncertainties with respect to aerosol have remained large. For an improved representation new aerosol modules in global modeling now distinguish between sulfate, organic carbon, black carbon, dust and sea-salt aerosol types. Here simulations of 18 models are presented. These are (in terms for forcing: intermediate products of) mass and aerosol optical depth and the conversion factor from mass into optical depth; the aerosolmass extinction efficiency.

- overall agreement for source location, but differences in strength large differences in simulated transport (and / or removal rates)
- Iarge differences in conversion (of mass into optical depth) due to
 - size assumptions **D** extra comparisons needed to
 - humidification assumptions identify/ remove poor assumptions ambient relative humidity used

AEROSOL MASS EXT. EFF.

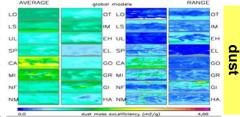
AEROSOL OPTICAL DEPTH

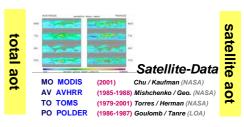

RESULTS

0	.0	suifate optical depth (550nm)		0,	.50	
AVERAGE		global models			RANGE	
LO	-	-	C OT LO	-0.96	30.0	то
LS		-	M LS		-	IM
UL	1.00	-	EH UL		-	EH
SP	Serie and		EL SP	- AND AND A	-	EL
CA			GO CA	100 ×	-	GC
м	-	-	GR MI	1400 C	-	GR
NF		-	GI NF	100	-	GI
NM	76-57	-	HA NM	-	-	НА
					_	

AVERAGE		g	lobal mod	RANGE		
LO	and the		OT LO		18.18	сот
LS		-	IM LS		-	IM
UL	-	-	EH UL		-	Ен
SP	Sec.		EL SP		tee	EL
CA			GO CA	-42	-	< GO
м		-	GR MI	4.00		GR
NF		- 20	GI NF	-	-	GI
NN	1697		HA NN	-	100	HA

SF C. м


AVERAGE	global models	RANGE
	OT LO	от
LS	IM LS	IM State
UL	EH UL	EH
SP CONT	EL SP	EL
CA	GO CA	GC
мі 🔜	GR MI	GR
NF	GI NF	GI
NM CON	HA NM	HA



LC L. sea-salt U s

N

RESULTS

AEROCOM project next

- to understand reasons for differences in mass to optical depth conversions among models: identical year, identical water uptake - to identify major causes for differences in mass distribution, including transport: identical inventories (sources), identical meteorology detailed evaluations - to understand observed seasonal and regional patterns of aerosol/chemistry: satellite data, field studies, long-term monitoring