The AeroCom Biomass Burning Experiment
Mariya Petrenko, Maria Val Martin, Ralph Kahn, Mian Chin

Wildfire Smoke Injection Heights & Source Strengths

MISR
Stereo Heights:
~3400 Smoke Plumes
Over N. America

% of Plumes injected above boundary layer
stratified by vegetation type & year

Val Martin et al. ACP 2010

MODIS Smoke Plume Image & Aerosol Amount Snapshots

GoCART Model-Simulated Aerosol Amount Snapshots
for Different Assumed Source Strengths

Different Techniques for Assuming Model Source Strength
Overestimate or Underestimate Observation
Systematically in Different Regions
Petrenko et al., JGR 2012
Source Strength
Refinements to the MODIS BB AOD Snapshot Dataset

(1) Expanded the **Number of Fire Cases** from 124 to over 900

(2) Used scaled reanalysis-model simulations to **Fill Missing AOD Retrievals** in the MODIS observations

(3) **Separated the BB Components** of the total AOD from background aerosol in the near-source regions (*using pre-fire-season AOD statistics*)

(4) Included emissions from **Small Fires** that are not identified explicitly in the satellite observations (*GFED4.1s*)

Background AOD is the modal mean AOD for the month (BG month) at the beginning of, or just before, the burning season.

\[
\text{MODIS BB AOD} = \text{Plume AOD}_{\text{tot}} - \text{AOD}_{\text{bkgnd}}
\]
Source Strength
Satellite Reference Observational Dataset
2004, 2006-2008

972 Cases in 16 Colored Ecosystems (497 in 2008)

Month when case was observed by MODIS

The colored squares represent ecosystems

Petrenko et al., 2017 in press
Source Strength

Adjustment Factor Situational Groupings

Group 1 – *Discrete, Strong Smoke Plumes* dominate, minimal adjustment needed

Group 2 – Smoke source *Adjustments Resolve most AOD Discrepancies*

Group 3 – *Background AOD High & Comparable* to or larger than smoke AOD

Group 4 – *Background AOD Low but Comparable* to smoke AOD

Group 1 – Alaska, Canada, Indonesia, Eastern Siberia

Group 2 – South Australia, Eastern USA, South America, Latin America (with SF)

Group 3 – India, China, Southeast Asia, North & South-Central Africa

Group 4 – Europe, + Crop, Cultivated ecosystems almost everywhere, & some Shrub
Organizing model runs into groups for which source-strength approach works differently, so we can:

- **Define adjustment factors** where they help
- Characterize situations with large uncertainties
- Separate inventory from model-specific issues

Petrenko et al., 2017 in prep.
About 50,000 smoke plumes digitized 2008-2010 (~16,000 for 2008)
- Each plume is Operator-Processed using MINXv4.0, and Quality Controlled
- For N America, about 18% - 20% of plumes are injected above the PBL
- Raw, graphics and summary files, and documentation are available on-line: https://misr.jpl.nasa.gov/getData/accessData/MisrMinxPlumes2/ Val Martin et al., 2017 in prep.
Biomass Burning Experiment PHASE 2: Fire Emission Injection Heights

- Heights at 1.1 km Horizontal res., ~250-500 m Vertical res.
- Keyed to the Elevation of Maximum Spatial Contrast
- Parallax is corrected for proper motion (Wind Correction)
- Height histogram gives some Indication of Vertical Extent

Val Martin et al., 2017 in prep.
Biomass Burning Experiment PHASE 2: Fire Emission Injection Heights

- Fire emissions are **Stratified by Altitude, Region, Ecosystem, & Season**
- Inter-annual and/or sub-seasonal **temporal resolution** might be required in some cases
- The cases in each stratum are **Averaged** to produce a statistical summary

Val Martin et al., 2017 in prep.
Example *Injection Height Vertical Distributions*
Stratified by Region and Biome

Val Martin et al., 2017 in prep.
Biomass Burning Experiment **PHASE 2:**

Global Statistics for 2008

Plumes by Month
(total plumes = 15,857)

- January: 1411
- February: 796
- March: 719
- April: 1511
- May: 1630
- June: 1531
- July: 1649
- August: 1615
- September: 978
- October: 1136
- November: 885
- December: 0

Plumes by Geographic Region

- Africa: 6939 (~44% of total)
- Australia: 1073
- Southwest Eurasia: 1093
- North America: 1329
- Boreal Eurasia: 1448
- South America: 1990
- South Asia: 1985

Plumes by Biome

- 53% of total #

Equivalent Plumes by Max Height and Band
(total Good + Fair plumes = 5391)

- Mode of red band max ht ~ = 700 m
- Mode of blue band max ht ~ = 1050 m

Val Martin et al., 2017 in prep.
Conclusion:
When the injection height is above the PBL in regions with significant wind shear, MINX-initiated simulations better represent satellite observations.

We invite AeroCom participants to run their models considering these injection-height constraints. How these data might be applied in models would be a topic for discussion at AeroCom, and as the study progresses.

CJ Vernon et al., UMD Senior Project 2017