Finnish perspective on aerosol research

Harri Kokkola

+ contribution from
 • University of Helsinki
 • University of Eastern Finland
 • Finnish Meteorological Institute
 • University of Oulu
 • Finnish Environment Institute
Finnish aerosol research

• First steps towards systematic research of atmospheric aerosol in 1980’s
 • Additional motivation from the Chernobyl 1986 nuclear accident
Finnish aerosol research

• Quick progress to extensive research in:
 • industrial nanoparticles
 • laboratory measurements
 • field observations
 • remote sensing
 • ground-based, satellite-based
 • modelling
 • from molecular scale to global scale
Institutes

- University of Helsinki
- University of Eastern Finland
- Finnish Meteorological Institute
- Tampere University of Technology
- VTT Technical Research Centre of Finland
- University of Oulu
- Finnish Environment Institute
- National Institute for Health and Welfare
Finnish Center of Excellence in Atmospheric Sciences

Atmosphere – biosphere feedback

From 1986 to 2017
• 5 -> 250 persons years
• Budget: 0.05 -> 15 Meuro
• Infra: 0 -> SMEARs, P-S, ICOS, (ACTRIS), (ANAEE)
• Productivity: 0 -> 150/200 (2-6) papers (in ISI)
• 5/16 ISI Highly Cited Scientists in Finland
• Ca 10% of Nature and Science papers in Finland per year
• 14 ERCs (Finland ca 125)

Core expertise in process scale
Global aerosol-modelling

- COSMOS project 2003
- ECHAM-HAMMOZ/MPI-ESM (SALSA for AeroCom)
- NorESM
- EC Earth (CMIP6, AerChemMIP)
Global nucleation
Global nucleation

Global nucleation rates (ECHAM-HAM)
Makkonen et al. (2009)

Climate impact of nucleation (ECHAM-HAM)
Makkonen et al. (2012)

Improved number concentrations with explicit nucleation (NorESM)
Makkonen et al. (2014)

Nucleation in EC-Earth-AerChemMIP
(Poster P38)

Observation
Without nucleation
Effect of nucleation

Pallas
Satellites / remote sensing

- Started ~ 2006 both in Helsinki & Kuopio
- AATSR
- MODIS
- MISR
- OMI
- CALIPSO
- AERONET
- SLSTR (Sentinel 3)
How useful are they?

• Global aerosol-climate models
 • should they reproduce e.g. field observations?
 • future predicting crystal balls?

• Satellite data too uncertain to be useful?
 • what data to use and how?
 • anomalies, trends?
 • satellites + models together
Model experiments
Ongoing project to identify robust regional climate effects of anthropogenic aerosols with three climate models:

- ECHAM6 / MPI-ESM, NorESM, EC-Earth (to be included later)

How similar are regional responses to modern day aerosols when using a standardized aerosol climatology (taken from MACv2-SP)?

MACv2-SP approach: model-specific background AOD and CDNC are enhanced in anthropogenic aerosol plumes

Stevens et al., Geosci. Model. Dev., 2017: MACv2-SP: a parameterization of anthropogenic aerosol optical properties and an associated Twomey effect for use in CMIP6
MACv2-SP aerosol climatology results in near identical aerosol forcing across models - below is the instantaneous TOA (direct + 1st indirect) short wave anthropogenic aerosol forcing from ECHAM6 and NorESM:

- **ECHAM6**: global mean -0.63 W/m^2
- **NorESM**: global mean -0.66 W/m^2

The resulting atmospheric cooling (from year 2005 slab ocean runs with and without anthropogenic aerosols) correlates very little with the original forcing:

- **ECHAM6**: global mean $\Delta T=0.55 \text{ K}$
- **NorESM**: global mean $\Delta T=0.49 \text{ K}$
ECHAM6 and NorESM slab ocean runs show strong arctic amplification of atmospheric cooling due to modern day anthropogenic aerosols (red and blue bars).

Arctic amplification is also present when only Asian aerosols are taken into account.
Satellite data
AOD over China from ATSR-2, AATSR and MODIS: seasonality

Seasonal variation varies by region;
- tendency similar for MODIS (C6 DTDB merged) and ATSR
- MODIS overestimates, ATSR underestimates
- ATSR has problems over bright surface where MODIS uses DB

Sogacheva et al., in prep.
AOD over China from ATSR-2, AATSR and MODIS: time series

Mainland China: yearly AOD

ATSR-2 + AATSR 2000-2011 L3 (1° x 1°)

ATSR & MODIS/Terra C6 are complementary:
- ATSR shows the AOD increase before the EOS era
- MODIS/Terra shows the AOD decrease after ENVISAT, in response to emission reductions

Two questions:
1) ATSR&MODIS are substantially different, can they be used together?
2) How effective are emission reductions?

de Leeuw et al., submitted
AOD over China from ATSR-2, AATSR and MODIS: combined time series

Initial increase
Followed by a decrease from ~2011

Linear fits?
Different factors contribute to the temporal variations

Sogacheva et al., in prep.

P-64 Larisa Sogacheva
MODIS Bayesian Dark Target algorithm

- Bayesian Dark Target (over land)
 - Based on Dark Target over land algorithm
 - Retrieves AOD, fine mode fraction and surface reflectances
 - Quantifies uncertainties related to retrievals on a pixel level
 - Multipixel retrieval (simultaneous retrieval of all pixels in a granule)
 - Spatial correlation models
 - Approximation error model / Uncertainty model for the aerosol models and radiative transfer simulations
 - Significantly improved retrieval accuracy, computationally feasible for near-realtime retrievals
MODIS Dark Target Algorithm

% within EE: 54.64
% above EE: 39.30
% below EE: 6.06
N = 45240; R = 0.890
MODIS Bayesian Dark Target Algorithm

% within EE: 75.65
% above EE: 17.38
% below EE: 6.97
N = 45240; R = 0.925
MODIS corrected reflectance
MODIS Dark Target Algorithm
MODIS Bayesian Dark Target Algorithm
MODIS Bayesian Dark Target Algorithm
MODIS Bayesian Dark Target algorithm

- Bayesian Dark Target (over land)
 - Based on Dark Target over land algorithm
 - Retrieves AOD, fine mode fraction and surface reflectances
 - Quantifies uncertainties related to retrievals on a pixel level
 - Multipixel retrieval (simultaneous retrieval of all pixels in a granule)
 - Spatial correlation models
 - Approximation error model / Uncertainty model for the aerosol models and radiative transfer simulations
 - Significantly improved retrieval accuracy, computationally feasible for near-realtime retrievals

P-60 Antti Lipponen
Retrieving aerosol composition from AERONET absorbing compounds

Mean absorbing OC concentration (mg/m^2) inferred from AERONET-retrieved imaginary indices for September.
Retrieving aerosol composition from AERONET absorbing compounds

Figure 1. Annual mean AOD from MODIS Terra, with AERONET study sites overlaid in the map. Source of MODIS data: http://disc.sci.gsfc.nasa.gov/giovanni.

Figure 5. Upper panel: monthly averages of the difference in AOD at 440 nm (blue) and at RNIR (red) between simulations with and without BrC. Middle panel: corresponding cases for SSA. Lower panel: monthly average DRE of BrC. Corresponding annual averages are given by the symbol after December.
Retrieving aerosol composition from AERONET absorbing compounds

Figure Column mass concentrations of sC (top row), BrC (middle row), and iron oxide (bottom row) retrieved from Level 2.0 AERONET data for January (left column) and August (right column).
New + old techniques
Reconstructing the aerosol load in the past

- The present day anthropogenic aerosol forcing ranges between -0.1 W/m^2 and -1.9 W/m^2, (IPCC, 2013)
- Stevens (2015) reduced the uncertainty over the Northern Hemisphere, it ranges between -0.3 W/m^2 and -1.0 W/m^2

- based solely on SO2 emissions vs AOD comprises black carbon and organic aerosols
- constantly increasing of aerosol load before 1980 vs opposite findings of decreasing aerosol load before 1950
Retrieving past AOD from SSR observations

- We applied different machine learning to retrieve AOD from SSR measurements, i.e. measurements not designed for AOD.
Retrieving AOD from SSR observations

The retrieval was done using four ML methods:
- Gaussian process
- neural network
- random forest
- support vector machine.
We also included a
- look-up-table approach
- a non-linear regression method

for retrieving AOD from the same data (Huttunen et al., 2016). The methods were set up to reproduce the AOD observed by a sun photometer for each observed SSR, solar zenith angle (SZA), and water vapour content (WVC).

Figure: Observed (AERONET) vs predicted AOD:
Going further back in time with sunshine duration (SD) measurements

Even back to 1800s?

Spain (2012-2014)

Sanchez-Romero et al., 2016

AERONET AOD at 440 nm

7. MADRID

$R = -0.63$

Slope = -0.28
Emulation of sub-grid scale aerosol-cloud interactions in climate models (ECLAIR)
Emulation of sub-grid scale aerosol-cloud interactions in climate models (ECLAIR)

UCLALES-SALSA
ECHAM-HAMMOZ
Correction of model reduction error in simulations

- Linear
- Random Forest
- K nearest neighbour
- Gaussian process
- Lasso
- Support vector regressor

Relative error vs Number of samples
Correction of approximation errors with machine learning methods

CDNC from an accurate cloud model

(a)

CDNC from a coarse model + error reduction
Combining aerosol models + satellite data
Evaluating simulated CCN concentrations from satellite observations

We utilize MODIS Terra, MOD08_M3.051,1°x1°, PSML003_Ocean, C6 column product (CCN/cm²) to evaluate changes in CCN over oceans.

Monthly anomaly for August 2004 (relative, %)
Examples of monthly CCN anomalies

Pacific
September 2002

Atlantic
November 2007
1) FixedEmis indicates <±5% of natural variability in CCN concentration.
1) FixedEmis indicates <±5% of natural variability in CCN concentration

2) FixedMeteo shows rather steady decrease during the whole period
1) FixedEmis indicates <±5% of natural variability in CCN concentration
2) FixedMeteo shows rather steady decrease during the whole period
3) Control simulation follows the anthropogenic emission anomalies
Simulated global trends of CCN(0.2%) between years 2001 and 2010

Control simulation

=

Changing anthropogenic emissions

+

Meteorological variability, natural emissions

cm³ / year

P-43 Risto Makkonen
Temperature dependence of biogenic AOD
Temperature dependence of biogenic AOD

Tropospheric NO2 assumed to be a proxy for anthropogenic AOD

Remaining temperature dependent AOD of biogenic origin

- anthropogenic contribution was estimated with a linear fit between the summertime AOD and tropospheric NO2 columns (AOD=1.31e^{-16}NO2,trop+0.013)
Temperature dependence of biogenic AOD

Remaining temperature dependence of biogenic origin?

Residual AOD after NO2 dependence subtracted

Talk in Session 10: Tero Mielonen
Conclusions

• Nucleation is necessary in models

• Global aerosol models and satellite data can be useful
 • Know their uncertainties and limits
 • Use the to complement each other