Minimizing the effects of aerosol swelling and wet scavenging in ECHAM6-HAM2 for comparison to satellite data

D. Neubauer1, M. Christensen2, C. Poulsen2, U. Lohmann1

1ETH Zurich, 2RAL Space

16th AeroCom workshop, 10 October 2017, Helsinki
Cloud contamination in satellite products enhances the aerosol indirect forcing estimate

- Near cloud aerosol retrievals possibly influenced by: aerosol swelling; misclassification of cloud particles; 3D effects near cloud edges
- Marked reduction in aerosol forcing by excluding near cloud aerosol

Figures from Christensen et al., 2017, ACP, accepted
Aerosol swelling

- Global model resolution is typical 100x100 km
- Water uptake of aerosol is known → dry aerosol index (AIdry)

low liquid clouds; 3-hourly instantaneous data; 1995-2012; susceptibilities are computed for each season and grid point; 60°N-60°S
Wet scavenging

- Removing raining scenes reveals the cloud lifetime effect
- Moderate and heavy precipitation cause a lasting impact on AIdry

ECHAM6-HAM2_Ref – dln(LWP)/dln(AIdry)

non-raining (precipitation < 0.5 mm / day)
Environmental regime composites

Regimes defined by:

- Precipitation state: Non-raining: precip. < 0.5 mm/day; Raining: precip > 0.5 mm/day
- Free tropospheric relative humidity (RH_{FT}): Dry: $RH_{FT} < 40\%$; Moist: $RH_{FT} > 40\%$
- Lower tropospheric stability (LTS): Unstable: LTS < 17K; Stable: LTS > 17K

Average over global oceans

MODIS-CERES data from Christensen et al. (2016)
In-cloud aerosol processing

- Aerosol processing increases aerosol size
- AODdry depends less on size than Aldry → less negative susceptibilities

ECHAM6-HAM2_AProc – dln(LWP)/dln(Aldry)
non-raining (precipitation < 0.5 mm / day)

ECHAM6-HAM2_AProc – dln(LWP)/dln(AODdry)
non-raining (precipitation < 0.5 mm / day)
Prognostic vs. diagnostic precipitation scheme

\[ACI_L = \frac{d \ln LWP}{d \ln AOD/AI} \]

- Low liquid clouds in this study
- Prognostic precipitation (PP) leads to increased susceptibilities although the accretion/autoconversion ratio is increased (Sant et al., 2015)
- Shift from rain to drizzle of marine stratocumulus
Effective radiative forcing (ERFaci) of low liquid clouds (average over global oceans)

\[
\text{intrinsic } ERF_{aci} = \overline{LCC_m} \left[\frac{d\alpha_{clr}}{d \ln AI} - \frac{d\alpha}{d \ln AI} \right] \Delta a_{AI} F_d
\]

Neubauer et al. (2017), ACP, accepted

AATSR-CAPA and MODIS-CAPA data from Christensen et al. (2017), ACP, accepted
MODIS-CERES data from Chen et al. (2014)
Summary and Outlook

- Better to compare the dry aerosol from model simulations to (artefact reduced) satellite data for studying susceptibilities

- Smaller ACI_L susceptibility in ECHAM6-HAM2 than in previous studies due to reduced RH impact

- Smaller ERF_{aci} in ECHAM6-HAM2 for dry than for humid aerosol

- Wet scavenging and aerosol processing have an impact

- ACI_L is negative in non-raining scenes for MODIS-CERES but positive for AATSR-CAPA and ECHAM6-HAM2

Thank you for your attention!