Southern Ocean AOD maximum: MISR, MAN and Aeronet perspectives

Marcin L. Witek

Jet Propulsion Laboratory
California Institute of Technology

and

Alexander Smirnov (MAN), Brent Holben (Aeronet)

© 2012. All rights reserved
Problem statement

There is a distinct maximum in aerosol optical depth (AOD) over Southern Oceans at around 55° S latitude band.

It is observed in satellite retrievals (MISR, MODIS) and simulated in global aerosol transport models (related to enhanced sea salt emission due to strong surface winds).
Marine Aerosol Network (MAN) AOD observations from 2004 onward

Problem statement

\[d\text{AOD} = \pm 0.02 \]
Problem statement

- MAN daily AOD observations
- MAN average
- MISR 10-year average

Low AODs in MAN in-situ observations

High AODs in model simulations and MISR retrievals

NAAPS sea salt AOD

AOD [nondimensional]

LAT

LON

0.16
0.14
0.12
0.1
0.08
0.06
0.04
0.02
MAN is right vs. MISR & transport models are right

Reliable information about
AOD (±0.02) but ...
Relatively small number of measurements
Direct observations might be biased towards cleaner conditions with lower wind speed

There are certain challenges with satellite retrievals and model simulations ...
Satellite retrievals

1. Cloud screening
2. Constraining surface conditions: climatological wind speed, whitecap coverage, sunglint
3. Other…

(Shi et al., 2011)

(Smirnov et al., 2011)
Multi-angle Imaging SpectroRadiometer (MISR)

Nine view angles at Earth surface: 70.5° forward to 70.5° backward

Nine 14-bit pushbroom cameras

275 m - 1.1 km sampling

Four spectral bands at each angle: 446, 558, 672, 866 nm

400-km swath: 9-day coverage at equator, 2-day at poles

7 minutes to observe each scene at all nine angles

Jet Propulsion Laboratory, California Institute of Technology
MAN data format

- all points
- series
- daily values

Collocation criteria

- Central point: closest MISR lat/lon region
- Central point not further than 17.6×3 km from MAN
- If central region NaN: average from 3x3 points
- Closest MAN time within ± 1h to MISR
- Exceptions made for MAN series separated by < 4h and having similar location (6 cases)
- MAN interpolated linearly in the log(AOD) vs. log(wavelength) space
Sagar Sampada, 20-Mar-2011

MAN time:
3:40
4:07
4:32
5:01
5:31
6:04
6:30
7:01
7:39
8:01
8:31

MAN = 0.35
MISR = 0.36

MISR time
20-Mar-2011
05:45:30

Marion Dufresne, 22-Apr-2009

MAN time:
5:22
6:04
6:40
7:27
11:00
11:32
11:56
12:30
13:06

MAN = 0.13
MISR = 0.30

MISR time
22-Apr-2009
07:26:48
211 MISR-MAN comparison points

Average difference: 0.043
RMSE = 0.064

Acceptable difference ~0.02?
Investigating MISR-MAN biases
MISR-MAN differences depend on the number of successful retrievals within the 3×3 collocation area.

The more retrievals the cleaner and less cloudy the scene.

In the end we want to characterize each region and cloud fraction seems a good option.
Region characteristics in MISR retrievals: Retrieval Applicability Mask

- 0 = clear
- 1 = missing data
- 2 = poor quality
- 3 = glitter-contaminated
- 4 = topo. obscured
- 5 = topo. shadowed
- 6 = topo. complex
- 7 = cloudy
- 8 = cloud shadow
- 9 = not smooth
- 10 = not correlated
- 11 = region not suitable
- 12 = -
- 13 = too bright
- 14 = cloudy other camera
- 15 = bright other camera
- 16 = -

Each region contains 16×16 subregions, each subregion is seen by 9 cameras:

16×16×9 = 2304 retrieval applicability masks
Correlation between different retrieval masks and MISR-MAN differences

Best correlation with clear mask fraction, then cloudy, then glitter contaminated
Red dots: clear fraction > 0.6
MISR-MAN bias = 0.0135
number of points: 41
We reduce the bias, but also exclude many comparison points (41 out of 211).
Low statistics makes the analysis less reliable.
Marine AERONET vs. MISR comparison

19 maritime Aeronet stations
1195 collocated points
370 collocated points with only central (the closest) MISR retrieval
• Correlations generally below 0.3
• Trends similar to MAN data
• Clear mask fraction seems good for correcting biases
• Combined MAN and Aeronet comparison points (~1400)
• Selecting clear mask fraction > 0.6 reduces the bias from 0.04 to 0.013
• Root mean square error is reduced by almost 0.02, to 0.05
• However, the number of retrievals is reduced by about 80%

Question: Do we see bias reduction in low AOD scenarios?
Observations < 0.05

Observations > 0.05 & < 0.2

Observations > 0.2

All points
11 year of MISR retrievals

Original V22 product

V22 product with clear mask fraction > 0.6

“clear” – only regions with the clear mask fraction higher than 0.6
• The multiyear global average AOD is lower by 0.03
• Even after reducing MISR biases the 55°S AOD maximum is still present
Collocated MISR-MAN points over the Southern Ocean suggest MAN might be favoring lower AOD conditions.
Summary

• MISR AOD retrievals are collocated with MAN and Aeronet observations (~200 and ~1200 points, respectively)
• MISR errors are inversely correlated with the clearness of retrieval region
• Error and bias corrections work for all AOD ranges
• Setting the clear mask fraction > 0.6 reduces the total average AOD by ~0.03
• MISR suggests there is still a local AOD maximum over the Southern Ocean

• Correction procedures eliminate too many valid retrievals
• Other retrieval issues are still evident and need to be corrected for