Understanding the absorption Angstrom exponent provided in the AERONET database

Gregory L. Schuster
NASA Langley Research Center

Oleg Dubovik
Universite de Lille

Antti Arola
Finnish Meteorological Institute
Motivation: The AAE approach for speciating absorbers

Observationally constrained estimates of carbonaceous aerosol radiative forcing

Chul E. Chung⁠¹, V. Ramanathan⁠², and Damien Decremer⁠³

¹School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; and ²Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093

Edited by Mark H. Thiemens, University of California San Diego, La Jolla, CA, and approved May 30, 2012 (received for review March 5, 2012)

Separate absorption AOD into carbon and dust components:

$$AAOD = \xi(\lambda) = \xi_d(1)\lambda^{-AAE_d} + \xi_{BC}(1)\lambda^{-AAE_{BC}} + \xi_{BrC}(1)\lambda^{-AAE_{BrC}}$$

where:

- $AAE_{dust} = 2.4$ Dust
- $AAE_{carbon} \approx 1$ Carbonaceous (0.84 to 1.16, depending upon region)
- $AAE_{BC} = 0.5$ Black Carbon
- $AAE_{BrC} = 4.8$ Brown Carbon
Motivation: The AAE approach for speciating absorbers

Observationally constrained estimates of carbonaceous aerosol radiative forcing

Chul E. Chung\(^{a,1}\), V. Ramanathan\(^b\), and Damien Decremer\(^d\)

\(^a\)School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; \(^b\)Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92039

Edited by Mark H. Thiemens, University of California San Diego, La Jolla, CA, and approved May 30, 2012 (received for review March 5, 2012)

Separate absorption AOD into carbon and dust components:

\[
AAOD = \xi(\lambda) = \xi_d(1)\lambda^{-AAE_d} + \xi_{BC}(1)\lambda^{-AAE_{BC}} + \xi_{BrC}(1)\lambda^{-AAE_{BrC}}
\]

where:

- \(AAE_{dust} = 2.4\) Dust
- \(AAE_{carbon} \approx 1\) Carbonaceous (0.84 to 1.16, depending upon region)
- \(AAE_{BC} = 0.5\) Black Carbon
- \(AAE_{BrC} = 4.8\) Brown Carbon

Problems with the AAE approach:

1. Assumes that all absorbers are externally mixed.
2. Uses AAE for BC is much lower than our traditional value of \(AAE_{BC} = 1\).
3. It does not account for the variability in the AAE of dust (0 to 3.5).
Main Points

1. All aerosols are *always* internally mixed in the AERONET retrieval.

2. AAE = 0.5 cannot represent BC in the AERONET database, unless $\frac{dk}{d\lambda} > 0$ for BC.

3. The AAE of dust can be anything (~0 to 3.5).
Main Points

1. All aerosols are *always* internally mixed in the AERONET retrieval.

2. AAE = 0.5 can not represent BC in the AERONET database, unless $\frac{dk}{d\lambda} > 0$ for BC.

3. The AAE of dust can be anything (~0 to 3.5).
If the atmosphere looks like this...
If the atmosphere looks like this...

AERONET uses an internal mixture like this to **compute** AAOD and AAE.
If the atmosphere looks like this...

AERONET uses an internal mixture like this to **compute** AAOD and AAE

Repurcussions:

- **All BC is internally mixed. Always!**
- **BC absorption contained in a small percentage of particles is redistributed to all particles in both fine and coarse modes.**
- **We can’t use complicated morphologies to explain AERONET AAE (i.e, fractals, or even core-shell).**
- **Single scatter albedo \(\leq 1 \). Always!**
AERONET Retrieval Schematic

• AAOD and AAE are computed from size and refractive index, and therefore can not be more robust than the retrieved refractive index.
• AAOD and AAE are computed from size and refractive index, and therefore can not be more robust than the retrieved refractive index.
• AAOD and AAE are computed from size and refractive index, and therefore can not be more robust than the retrieved refractive index.
Absorption Angstrom Exponent (AAE) and AAOD

Size Distribution

Refractive index

Aerosol Optical Depth, Single Scatter Albedo, Phase Fcn

Radiative transfer model

Modeled aerosol optical depth and radiances match measurements?

Iterate refractive index and/or size distribution

• AAOD and AAE are computed from size and refractive index, and therefore can not be more robust than the retrieved refractive index.
Main Points

1. All aerosols are *always* internally mixed in the AERONET retrieval.

2. AAE = 0.5 cannot represent BC in the AERONET database, unless \(\frac{dk}{d\lambda} > 0 \) for BC.

3. The AAE of dust can be anything (~0 to 3.5).
AAE calculations for bimodal lognormals with spectrally invariant k (i.e., $dk/d\lambda = 0$)

\[
\frac{dV}{d\ln r} \propto \sum_{i=1,2} \exp \left[- \frac{(\ln r - \ln R_i)^2}{2\sigma_i^2} \right]
\]

\[
R_{fin} = 0.12 \, \mu m, \quad R_{crs} = 3.2 \, \mu m, \quad \sigma_{fin} = 0.38, \quad \sigma_{crs} = 0.75
\]

\[
n = 1.49
\]

See also
Bond, GRL (2001),
Gyawali ACP (2009),
Lack and Langridge, ACP (2013)
AERONET AAE, filtered for $\delta k \leq 10\%$

West Africa:
Agoufou, Banizoumbou, IER_Cinzana, Capo_Verde, Dakar, Ilorin, Quarzazete, Santa Cruz Tenerife, Tamanrasset

Middle East:
Solar Village, Nes Ziona, Sede Boker, Dhabi, Hamin

South Africa:
Mongu, Skukuza

S. America:
Alta Floresta, Cuiaba, Cuiaba-Miranda, Abracos Hill, Balbina, Belterra, Santa Cruz

$$\sum_{i=1,2} \exp \left[- \frac{(\ln r - \ln R_i)^2}{2\sigma_i^2} \right]$$

$$R_{fin} = 0.12 \mu m, \quad R_{crs} = 3.2 \mu m, \quad \sigma_{fin} = 0.38, \quad \sigma_{crs} = 0.75$$

$n = 1.49$
AERONET AAE (L2), filtered for $\delta k \leq 10\%$

$R = 0.86$

$N = 1148$
West Africa:
Agoufou, Banizoumbou, IER_Cinzana, Capo Verde, Dakhla, Dakar, Ilorin, Quarzazete, Santa Cruz, Tenerife, Tamanrasset

Middle East:
Solar Village, Nes Ziona, Sede Boker, Dhabi, Hamin

South Africa:
Mongu, Skukuza

S. America:
Alta Floresta, Cuiaba, Cuiaba-Miranda, Abracos Hill, Balbina, Belterra, Santa Cruz

AERONET AAE (L2), filtered for \(\delta k \leq 10\% \)

\[\delta k \leq 10\% \]

\[R = 0.86 \]

\[N = 1148 \]
AAE < 1 requires spectrally variable k for small particles
AAE < 1 requires spectrally variable k for small particles

Absorption attributable to “pure” BC mixed with scatterers expected only in this region.

Medians
sam:
AAE: 1.38
krat: 1.21
waf
AAE: 2.13
krat: 2.66
AAE < 1 requires spectrally variable k for small particles

94% of retrievals with AAE < 1 also indicate that $k_{440} < k_{\text{rnir}}$.

Medians
- **sam**: AAE: 1.38, krat: 1.21
- **waf**: AAE: 2.13, krat: 2.66
AAE < 1 requires spectrally variable k for small particles

Fine Volume Fraction

- **SAM**
 - Aug – Sep
 - > 90% spheres
 - $R_{\text{sam}} = 0.94$

- **WAF**
 - $fvf < 0.05$
 - depolarization > 0.2
 - $R_{\text{waf}} = 0.95$

Medians

- **sam**
 - AAE: 1.38
 - krat: 1.21

- **waf**
 - AAE: 2.13
 - krat: 2.66

Broken Area Equivalent (AAE)

$k_{440} / k_{\text{rnir}}$

(spectral variability)
Main Points

1. All aerosols are *always* internally mixed in the AERONET retrieval.

2. AAE = 0.5 can not represent BC in the AERONET database, unless $dk/d\lambda > 0$ for BC.

3. The AAE of dust can be anything (~0 to 3.5).
What about spectrally variable imag indices (i.e., $dk/d\lambda \neq 0$)

BC: $AAE = 1$ for small particles.

Hematite: $AAE > 1$.
What about spectrally variable imag indices (i.e., $dk/d\lambda \neq 0$)

BC: AAE = 1 for small particles.

Hematite: AAE > 1.

Goethite: AAE < 1.
What about spectrally variable imag indices (i.e., $dk/d\lambda \neq 0$)

BC: $AAE = 1$ for small particles.

Hematite: $AAE > 1$.

Goethite: $AAE < 1$.

The goethite fraction of iron oxide in dust varies from 0.4 to 0.7 (Lafon, JGR 2006; Shi, Aeolian Res, 2012).
AAE for dust can be anything!

Dust and carbonaceous aerosols can not be separated with confidence using AAE

were the biomass sites filtered for 90% spheres in these slides? YES!

mea: Middle East
sam: South America
waf: West Africa
saf: Southern Africa

Lev20
AAE for dust can be anything!

Dust and carbonaceous aerosols can not be separated with confidence using AAE

Absorption Angstrom Exponent, 870–440

11% of West Africa dust have AAE < 1

13% of S. America smoke have AAE < 1

mea: Middle East
waf: West Afriaca
sam: South America
saf: Southern Africa

Conclusion: AAE < 1 not an indicator of carbonaceous aerosol
AAE for dust can be anything!

Dust and carbonaceous aerosols can not be separated with confidence using AAE

Strong separation exists in imaginary refractive index space.

11% of West Africa dust have AAE < 1

13% of S. America smoke have AAE < 1

mea: Middle East
waf: West Afriaca
sam: South America
saf: Southern Africa

Conclusion: AAE < 1 not an indicator of carbonaceous aerosol
Conclusions

• AERONET AAE and AAOD are computed from size and refractive index!
• External mixture assumption of AAE approach is inconsistent with AERONET retrievals.
• The value of $AAE_{BC} = 0.5$ is inconsistent with the Bond (2013) definition of BC.
• $AAE < 1$ can be caused by coarse mode particles or $dk/d\lambda > 0$, but not carbon particles.
• Coming soon to ACPD!
• gregory.l.schuster@nasa.gov

Acknowledgements

This material is supported by the National Aeronautics and Space Administration under the NASA Glory Science Team, issued through the Science Mission Directorate, Earth Science Division. We appreciate the efforts of the 29 AERONET and PHOTONS (Service d'Observation from LOA/USTL/CNRS) principal investigators and the entire AERONET and PHOTONS teams for obtaining, processing, documenting, and disseminating their respective datasets.
AERONET Retrieval Schematic

- **Size Distribution**
- **Refractive index**
- **Aerosol Optical Depth, Single Scatter Albedo, Phase Fcn**
- **Radiative transfer model**
- **Modeled aerosol optical depth and radiances match measurements?**
- **Iterate refractive index and/or size distribution**
- **Modeled aerosol composition matches refractive index?**
- **Iterate aerosol composition**

16
The AAE approach for speciating absorbers

Separate absorption AOD into carbon and dust components:

\[\xi = \xi_c + \xi_d \]
The AAE approach for speciating absorbers

Separate absorption AOD into carbon and dust components:

\[\xi = \xi_c + \xi_d \]

Apply Angstrom Eq to each component:

\[\xi(1)\lambda^{-AAE} = \xi_c(1)\lambda^{-AAE_c} + \xi_d(1)\lambda^{-AAE_d} \]
The AAE approach for speciating absorbers

Separate absorption AOD into carbon and dust components:
\[\xi = \xi_c + \xi_d \]

Apply Angstrom Eq to each component:
\[\xi(1)\lambda^{-AAE} = \xi_c(1)\lambda^{-AAE_c} + \xi_d(1)\lambda^{-AAE_d} \]

where:
- \(AAE_d = 2.4 \) (dust)
- \(AAE_c = 0.84 \) to 1.16 (carbonaceous; region specific)
The AAE approach for speciating absorbers

Separate absorption AOD into carbon and dust components:

\[\xi = \xi_c + \xi_d \]

Apply Angstrom Eq to each component:

\[\xi(1) \lambda^{-AAE} = \xi_c(1) \lambda^{-AAE_c} + \xi_d(1) \lambda^{-AAE_d} \]

where:

\[AAE_d = 2.4 \quad \text{(dust)} \]
\[AAE_c = 0.84 \text{ to } 1.16 \quad \text{(carbonaceous; region specific)} \]
The AAE approach for speciating absorbers

Separate absorption AOD into carbon and dust components:

\[\xi = \xi_c + \xi_d \]

Apply Angstrom Eq to each component:

\[\frac{\xi(1)\lambda^{-AAE}}{AAE_{d}} = \frac{\xi_c(1)\lambda^{-AAE_c}}{AAE_{c}} + \frac{\xi_d(1)\lambda^{-AAE_d}}{AAE_{d}} \]

where:

\[AAE_{d} = 2.4 \quad (\text{dust}) \]
\[AAE_{c} = 0.84 \text{ to } 1.16 \quad (\text{carbonaceous; region specific}) \]

Carbonaceous component is further separated into BC and BrC:

\[\xi_c(1)\lambda^{-AAE_c} = \xi_{BC}(1)\lambda^{-AAE_{BC}} + \xi_{BrC}(1)\lambda^{-AAE_{BrC}} \]
\[AAE_{BC} = 0.5 \]
\[AAE_{BrC} = 4.8 \]
The AAE approach for speciating absorbers

Separate absorption AOD into carbon and dust components:
\[\xi = \xi_c + \xi_d \]

Apply Angstrom Eq to each component:
\[\xi(1)\lambda^{-AAE} = \xi_c(1)\lambda^{-AAE_c} + \xi_d(1)\lambda^{-AAE_d} \]

where:
\[AAE_d = 2.4 \quad \text{(dust)} \]
\[AAE_c = 0.84 \text{ to } 1.16 \quad \text{(carbonaceous; region specific)} \]

Carbonaceous component is further separated into BC and BrC:
\[\xi_c(1)\lambda^{-AAE_c} = \xi_{BC}(1)\lambda^{-AAE_{BC}} + \xi_{BrC}(1)\lambda^{-AAE_{BrC}} \]
\[AAE_{BC} = 0.5 \]
\[AAE_{BrC} = 4.8 \]

Assumes that BC and BrC are externally mixed.
The AAE approach for speciating absorbers

Separate absorption AOD into carbon and dust components:

\[\xi = \xi_c + \xi_d \]

Apply Angstrom Eq to each component:

\[\xi(1)\lambda^{-AAE} = \xi_c(1)\lambda^{-AAE_c} + \xi_d(1)\lambda^{-AAE_d} \]

where:

- \(AAE_d = 2.4 \) (dust)
- \(AAE_c = 0.84 \) to \(1.16 \) (carbonaceous; region specific)

Carbonaceous component is further separated into BC and BrC:

\[\xi_c(1)\lambda^{-AAE_c} = \xi_{BC}(1)\lambda^{-AAE_{BC}} + \xi_{BrC}(1)\lambda^{-AAE_{BrC}} \]

- \(AAE_{BC} = 0.5 \)
- \(AAE_{BrC} = 4.8 \)

Assumes that BC and BrC are externally mixed.

Much lower than traditional value of \(AAE = 1 \).
The AAE approach for speciating absorbers

Separate absorption AOD into carbon and dust components:
\[\xi = \xi_c + \xi_d \]

Apply Angstrom Eq to each component:
\[\xi(1)\lambda^{-AAE} = \xi_c(1)\lambda^{-AAE_c} + \xi_d \]

where:
- \(AAE_d = 2.4 \) (dust) *Always!*
- \(AAE_c = 0.84 \) to 1.16 (carbonaceous; region specific)

Carbonaceous component is further separated into BC and BrC:
\[\xi_c(1)\lambda^{-AAE_c} = \xi_{BC}(1)\lambda^{-AAE_{BC}} + \xi_{BrC}(1)\lambda^{-AAE_{BrC}} \]

- \(AAE_{BC} = 0.5 \)
- \(AAE_{BrC} = 4.8 \)

But, the AAE of dust can be anything (< 0 to 3.5)

Assumes that BC and BrC are externally mixed

Much lower than traditional value of AAE = 1
The AAE approach for speciating absorbers

Separate absorption AOD into carbon and dust components:

\[\xi = \xi_c + \xi_d \]

Apply Angstrom Eq to each component:

\[\xi(1) \lambda^{-AAE} = \xi_c(1) \lambda^{-AAE_c} + \xi_d(1) \lambda^{-AAE_d} \]

Assumes that BC and BrC are externally mixed

Much lower than traditional value of AAE = 1

But, the AAE of dust can be anything (< 0 to 3.5)

Carbonaceous component is further separated into BC and BrC:

\[\xi_c(1) \lambda^{-AAE_c} = \xi_{BC}(1) \lambda^{-AAE_{BC}} + \xi_{BrC}(1) \lambda^{-AAE_{BrC}} \]

\[AAE_{BC} = 0.5 \]
\[AAE_{BrC} = 4.8 \]

where:

\[AAE_d = 2.4 \]
\[AAE_c = 0.84 \text{ to } 1.16 \] (carbonaceous; region specific)
Clearly, AAE < 1 does not represent carbonaceous aerosol in Africa.

Symbols indicate that:
- 86% of the fvf are less than 0.2,
- 56% of the dp are greater than 0.2,
- and 94% of the AE are less than 1.0.

11% of retrievals