-------------------------------------------------------------------------- AEROCOM EMISSIONS: suggested EMISSION (-fluxes) for AEROSOL (by species) -------------------------------------------------------------------------- MODIFICATION HISTORY Oct 2005 some editorial corrections (descriptive Word document) Sep 2005 correction of VOLCANIC altitude data (minor impact). Aug 2004 new DUST emissions (corrected sizing - now larger) Aug 2004 new SEASALT emissions (now ca 10% larger [ice cover bug] Jul 2004 PRE-INDUSTRIAL emissions added (for year 1750) Apr 2004 new seasalt emissions (ice-cover screen is now applied) Jan 2004 VOLCANIC ALTITUDE data fixed (were all '0' by mistake) Dec 2003 initial version established (for year 2000) FORMAT data are stored in netcdf-files (_.nc) [in ..._ncf subdirectories] data resolution is 1*1 deg(longitude/latitude), [element=grid-box] data units ../grid_box/time (e.g number conc., mass-flux(in kg)) modelers might prefer units of '../m2/time' ...in that case monthly netcdf-files (dust, seasalt, DMS) contain a 2D-field named gridbox_area [360,180] providing data in m2/grid-box 'year 2000': COMMON AEROSOL SPECIES and ADDITIONAL SPECIES for 'year 2000' 'year 1750': COMMON AEROSOL SPECIES and ADDITIONAL SPECIES for 'year 1750' (dust, seasalt, DMS, SOA, volcanic emissions remain the same) COMMON (daily) AEROSOL SPECIES ------------------------------ species data type author location on web-site -------------------------------------------------------------------------- DUST daily data by size mode (P.Ginoux) in subdir /dust_ncf SALT(dry) daily data by size mode (S.Gong) in subdir /seasalt_ncf DMS daily data (O.Boucher) in subdir /DMS_ncf [for sensitivity-studies: old DUST data(<8/04) in subdir /dust_small_ncf these dust-fluxes underestimate dust size by a factor of 2 increasing accumulation flux totals by about a factor of 10] Dust: Paul Ginoux [pag@gfdl.noaa.gov] - originaly: daily, 1*1, 4 size-bins References: Ginoux et al. JGR 102 3819-3830, 2001 Ginoux et al. dust spec. issue, Environ.M&S, 2004 Seasalt: Sunling Gong - originally: 6hr data, 1.175*1.175, 24 size-bins Reference: Gong et.al. JGR, 107, 2002 plus: ECWMF 2000 monthly ice-screen implemented (no seasalt over ice) DMS: Olivier Boucher - originally: 6hr data, 3.75*2.5, based on LMDZ GCM sim Ref-oceanic: Kettle & Andreae JGR, 105, 26793.., 2000 Ref-surf 10m-winds: Nightingale et.al. Gl.Bio.Cyc. 14, 373... 2000 Ref-biogenic: Pham et.al. JGR, 100, 26061... 1995 monthly emission totals (and accumulation mode totals) Tg/mo DUST, r<.5um SALT, r<.5um DMS ----- --- ------------ ------------ ---- Jan 164 2.25 656 8.32 1.89 Feb 170 2.38 680 8.63 2.05 Mar 153 2.11 709 9.00 1.96 Apr 129 1.77 654 8.31 1.53 May 142 1.89 674 8.57 1.29 Jun 144 1.92 642 8.15 1.14 Jul 124 1.69 675 8.57 1.13 Aug 121 1.64 680 8.63 1.27 Sep 113 1.51 640 8.13 1.01 Oct 139 1.92 655 8.32 1.18 Nov 142 1.96 591 7.52 1.68 Dec 137 1.84 669 8.50 2.12 ADDITIONAL SPECIES for 'year 2000' ---------------------------------- time size-type Tg/yr altitude in /other_ncf_2000 ------ --------- --------- ------------ ------------------- BC biofuel yearly BIOMASS 1.6(BC) lowest layer BC1bfuel.nc BC fossil f yearly TRAFFIC 3.0(BC) lowest layer BC1ff.nc BC veg.fire monthly BIOMASS 3.0(BC) 6_diff. alt. GFED_2000_BC.nc 5-yr avg 6_d GFED_average_1997-2002_BC.nc OM biofuel yearly BIOMASS 9.1(POM)* lowest layer POMbfuel.nc OM fossil f yearly TRAFFIC 3.2(POM)* lowest layer POMff.nc OM veg.fire monthly BIOMASS 34.7(POM)* 6_diff. alt. GFED_2000_POM.nc 5-yr avg 6_d GFED_average_1997-2002_POM.nc OM SOA monthly on exist 3.2(POM)* lowest layer SOA.nc SU veg.fire monthly BIOMASS 4.1(SO2) 6_diff. alt. GFED_2000_SO2.nc 5-yr avg 6_d GFED_average_1997-2002_SO2.nc SU roads yearly TRAFFIC 1.9(SO2) lo-l SO2_RoadTransport_2000bau.nc SU off-road yearly TRAFFIC 1.6(SO2) lo-l SO2_Off-road_2000bau.nc SU domestic yearly TRAFFIC 9.5(SO2) lo-layer SO2_Domestic_2000bau.nc SU industry yearly INDUSTR 39.3(SO2) 100-300m SO2_Industry_2000bau.nc SU shipping yearly INDUSTR 7.8(SO2) lo-l SO2_Int._Shipping_2000bau.nc SU powerpl. yearly INDUSTR 48.4(SO2) 100-300m SO2_Powerpl._2000bau.nc Volc, cont yearly 50%TR/BIO 25.2(SO2) 2/3-1/1*Vtop continuous_volc.nc Volc, expl yearly 50%TR/BIO 4.0(SO2) .5-1.5km ab Vtop explosive_volc.nc (lat/lon of volcanos are listed in /other_ascii/continous_volc.1x1) ----------------------------------------------------------------------------- * OC-POM relationship: 1.4*OC <==> POM SO2-S relationship: 0.5*SO2 <==> S 97.5 % of S emitted as SO2, 2.5% emitted as primary SO4! references: biomass burn (GFED): v.g.Werf http://www.gps.caltech.edu/~jimr/randerson.html "Carbon emissions from fires in tropics, GCB, 2003" fossil fuel (SPEW): Bond "A technology based global inventory of BC and OC emissions from combustion, JGR 2003" SO2: Cofala (IIASA): country based using (RAINS), gridded according EDGAR3.2 Ships 2000: assume 1.5%/year increase since 1995 volcanic (SO2): continuous - GEIA *1.2 [Andres/Kasgnoc JGR 1998] explosive - loc of active v. last 100 yrs [Halmer JVGR 2002] ADDITIONAL SPECIES for 'year 1750' ---------------------------------- time size-type Tg/yr altitude in /other_ncf_1750/ ------ --------- --------- ------------ ------------------- BC biofuel yearly BIOMASS .26(BC) lowest layer BC1_1750_bfuel.nc BC veg.fire monthly BIOMASS 1.02(BC) 6 diff. alt. GFED_1750_BC.nc OM biofuel yearly BIOMASS 2.49(POM)* lowest layer POM_1750_bfuel.nc OM veg.fire monthly BIOMASS 12.8(POM)* 6 diff. alt. GFED_1750_POM.nc OM SOA monthly on exist 19.1(POM)* lowest layer SOA.nc SU biofuel yearly BIOMASS 0.12(SO2) lowest layer SO2_1750_domestic.nc SU veg.fire monthly BIOMASS 1.45(SO2) 6 diff. alt. GFED_1750_SO2.nc volc, cont yearly 50%TR/BIO 25.2(SO2) 2/3-1/1*Vtop continuous_volc.nc volc, expl yearly 50%TR/BIO 4.0(SO2) .5-1.5km ab Vtop explosive_volc.nc -------------------------------------------------------------------------- * OC-POM relationship: 1.4*OC <==> POM 97.5 % of S emitted as SO2, 2.5% emitted as primary SO4! 'year_1750' biofuel was calculated from two different sources: - BC/POM: Scaling of the developed countries use of biofuels based on the replacement of cooking fuels from wood to electricity and natural gas taking into account the energy consumption of wood from 1870 to 1960 in US. - 1890 SO2: CO biofuel inventory from (Aardenne) (Susott et al.,1991) - multiply with emission factor ratio (S02/CO: .27/.78)(Andreae+Merlet,1997) - scale back in time with population numbers from 1890 to 1750 (HYDE database) - scaled up by factor 2 north of 45 N. (not significant for global total) large scale burning was determined by: - taking the 1997-2002 avg of the GFED inventories of G. van de Werf - use Olson (1985) current land cover [grassland, shrub/bush, forest, agriculture, other] - use (regional) population ratio of HYDE 1990 to 1750 - hi-latitude forest emissions: 2* current value, due to lack of prevention in N.America, Russia, Europe: see Brenkert et al,Transactions, AGU, 78 1997 - wet forest emissions: scale by pop(ulation) - grasslands: activity: 0.4+0.6*ratio of pop in 1750/1990 (40% burns anyhow) - agricultural fires: 0.4+0.6*ratio of pop in 1750/1990 (40% burns anyhow) 1750 2000 regional population numbers (in million) from HYDE ---- ---- (http://www.rivm.nl/hyde/1990) Canada 0.3 27.8 USA 2.1 254.1 C. America 5.5 145.1 S. America 5.0 292.8 N. Africa 4.5 118.2 W. Africa 22.1 242.0 E. Africa 8.0 151.8 S. Africa 10.7 117.5 OECD Eur. 113.7 377.1 E. Europe 31.6 122.2 F. USSR 25.3 289.6 M. East 9.3 192.4 S. Asia 172.0 1132.1 E. Asia 268.9 1247.1 SE Asia 28.5 442.0 Oceania 0.3 26.4 Japan 24.9 123.5 World 722.2 5301.8 AEROSOL SIZE for 'additional' emissions: --------------------------- prescribed 'log-normal distribution' parameters mode_radius std.deviation effective (by number) (distr.width) radius --------- ------------- --------------- ---------- INDUSTR .500 um 2.0 --> 1.66 um BIOMASS .040 um 1.8 --> .095 um TRAFFIC .015 um 1.8 --> .036 um for 'common' daily emissions: ----------------------------- [DUST and SEASALT emission fluxes] DUST size is described by 2 (ln-) size modes SEASALT size is described by 3 (ln-) size modes Option 1 (preferred): use the log-normal parameters for each size-mode: - 'mode?_number' number concentration per 1*1grid - 'mode?_radius' mode radius (in micrometer) - 'sigma' standard deviation (prescribed ! ) (log-normal formula is explained below) Option 2 (in case the model requires input for PARTICULAR SIZE-BINS) use 'binflux.pro' in subdirectory /idl_binflux the execution of this idl routine requires - 'bininput' input file ('binDU','binSS' are samples) - idl support routines in subdir /idl_binflux/support the 'binflux.pro' idl routine creates netcdf files with daily fluxes the 'binflux.pro' idl routine needs to be executed for each size-bin ...where the size-bin's lower and upper boundary ('rmin' and 'rmax') radius limits are set in 'bininput'. To make sure that all the mass of the coarse log-normal size-distributions is accounted for NOTE: a maximum radius of at least 25um for seasalt and dust bins is needed --------------------------------- naming Dust Seasalt convention ----------------------------- -------------------------------- mode?_number mode?_radius sigma mode?_number mode?_radius sigma -------------------------------- -------------------------------- aitken --- --- --- mode1_number mode1_radius 1.59 accumu mode2_number mode2_radius 1.59 mode2_number mode2_radius 1.59 coarse mode3_number mode3_radius 2.00 mode3_number mode3_radius 2.00 annual global Dust Seasalt average values-------------------------- -------------------------------- aitken --- --- --- 7.5e18 0.022(0.037)um 1.59 accumu 2.2e19 0.22 (0.37)um 1.59 3.3e19 0.13 (0.22)um 1.59 coarse 3.6e19 0.63 (2.09)um 2.00 6.8e18 0.74 (2.50)um 2.00 (size-summed mass fluxes are provided only for testing purposes!) log-normal formula (to be integrated over many sizes for each size mode) ------------------ MASSFLUX at size radius 'rad' representing the size-interval delta_rad for a 'mode?' and a density 'rho': epsi = ((alog(rad)-alog(mode?_radius))^2) /(2.0*(alog(sigma))^2) envonr = [mode?_number]/(rad*sqrt(2.0*pi)*alog(sigma)) *exp(-epsi) massflux = envonr *delta_rad *4.0/3.0 *rho *pi *rad*rad*rad some more info on DUST/SEASALT/DMS DUST -> /Dust_ncf data and plots (for details look into 'dustinfo') - dust2000##.nc monthly dust-source netcdf-files (total and 2 size-classes) size-class2 (radius 0.05-0.5um): mode2_radius,(sd=1.59), number, (mass-flux) size-class3 (radius 0.5-6.0um) : mode3_radius,(sd=2.00), number, (mass-flux) for calculation of mass-fluxes use a density of 2.5g/cm3 (or 2.5e-15kg/um3) (note: mass-fluxes are only given as backup! use lognormal distribution parameters for mode-radius and number-conc to determine mass-fluxes, ...supporting plots (and __.jpg versions) ndustn2a.ps - monthly number mean-2 (ndustn2a.pro -ndustn2a.d-> ndustn2a.ps) ndustn2r.ps - monthly number range2 (ndustn2r.pro -ndustn2r.d-> ndustn2r.ps) ndustr2a.ps - monthly radius mean-2 (ndustr2a.pro -ndustr2a.d-> ndustr2a.ps) ndustr2r.ps - monthly radius range2 (ndustr2r.pro -ndustr2r.d-> ndustr2r.ps) ndustn2a.ps - monthly number mean-2 (ndustn2a.pro -ndustn2a.d-> ndustn2a.ps) ndustn2r.ps - monthly number range2 (ndustn2r.pro -ndustn2r.d-> ndustn2r.ps) ndustn3a.ps - monthly number mean-3 (ndustn3a.pro -ndustn3a.d-> ndustn3a.ps) ndustn3r.ps - monthly number range3 (ndustn3r.pro -ndustn3r.d-> ndustn3r.ps) ndustr3a.ps - monthly radius mean-3 (ndustr3a.pro -ndustr3a.d-> ndustr3a.ps) ndustr3r.ps - monthly radius range3 (ndustr3r.pro -ndustr3r.d-> ndustr3r.ps) ndustfl.ps - monthly total flux (ndustfl.pro -ndustfl.d -> ndustfl.ps) ndustfy.ps - yearly flux by mode (ndustfy.pro -ndustfy.d -> ndustfy.ps) SEASALT -> /Seasalt_ncf data and plots (for details look into 'saltinfo') - salt2000##.nc monthly dust-source netcdf-files (total and 3 size-classes) size-class1 (radius .005-.05um), mode1_radius (sd=1.59), number, (mass-flux) size-class2 (radius 0.05-0.5um), mode2_radius (sd=1.59), number, (mass-flux) size-class3 (radius 0.5-10.0um), mode3_radius (sd=2.00), number, (mass-flux) for calculation of mass-fluxes use a density of 2.2g/cm3 (or 2.2e-15kg/um3) (note: mass-fluxes are only given as backup! use lognormal distribution parameters for mode-radius and number-conc to determine mass-fluxes, - icefreeocean.nc (a multiplier for ice-free oceans - no seasalt over ice) ...supporting plots (and __.jpg versions) nsaltn1a.ps - monthly number mean-1 (nsaltn1a.pro -nsaltn1a.d-> nsaltn1a.ps) nsaltn1r.ps - monthly number range1 (nsaltn1r.pro -nsaltn1r.d-> nsaltn1r.ps) nsaltr1a.ps - monthly radius mean-2 (nsaltr1a.pro -nsaltr1a.d-> nsaltr1a.ps) nsaltr1r.ps - monthly radius range2 (nsaltr1r.pro -nsaltr1r.d-> nsaltr1r.ps) nsaltn2a.ps - monthly number mean-2 (nsaltn2a.pro -nsaltn2a.d-> nsaltn2a.ps) nsaltn2r.ps - monthly number range2 (nsaltn2r.pro -nsaltn2r.d-> nsaltn2r.ps) nsaltr2a.ps - monthly radius mean-2 (nsaltr2a.pro -nsaltr2a.d-> nsaltr2a.ps) nsaltr2r.ps - monthly radius range2 (nsaltr2r.pro -nsaltr2r.d-> nsaltr2r.ps) nsaltn3a.ps - monthly number mean-3 (nsaltn3a.pro -nsaltn3a.d-> nsaltn3a.ps) nsaltn3r.ps - monthly number range3 (nsaltn3r.pro -nsaltn3r.d-> nsaltn3r.ps) nsaltr3a.ps - monthly radius mean-3 (nsaltr3a.pro -nsaltr3a.d-> nsaltr3a.ps) nsaltr3r.ps - monthly radius range3 (nsaltr3r.pro -nsaltr3r.d-> nsaltr3r.ps) nsaltfl.ps - monthly total flux (nsaltfl.pro -nsaltfl.d -> nsaltfl.ps) nsaltfy.ps - yearly flux by mode (nsaltfy.pro -nsaltfy.d -> nsaltfy.ps) DMS -> /DMS_ncf data and plots (for details look into 'dustinfo') - dms2000##.nc monthly dust-source netcdf-files data near coastline are conservatively screened to avoid high DMS over land ...supporting plots (and __.jpg versions) ndmsfl.ps - monthly total flux (ndmsfl.pro -ndmsfl.d-> ndmsfl.ps) ndmsfy.ps - monthly total flux (ndmsfy.pro -ndmsfy.d-> ndmsfy.ps) REFERENCES Allen, A., and A.Miguel, Biomass burning in the Amazon: characterisation of ionic component of the aerosols generated from flaming and smouldering rainforest and savannah., Environ. Sci. Tech., 29, 486-493, 1995. Anderson, B., W.Grant, G.Gregory, E.Browell, J.Collins,Jr., G.Sachse, C.Hudgins, D.Blake, and N.Blake, Aerosols from Biomass Burning Over the South Atlantic Region: Distributions and Impacts, J. Geophys. Res., 101, 24117-24138, 1996. Andreae, M. and P.Merlet, Emission of trace gases and aerosols from biomass burning, Global Biogeochemical Cycles, 15, 955-966, 2001. Andres, R and A Kasgnoc, A time-averaged inventory of sub-aerial volcanic sulfur emissions, J. Geophys. Res 103, 19, 25251-25261, 1998. Bond, T., D.Streets, K.Yarber, S.Nelson, J.-H.Wo, Z.Klimont, 2004, A technology-based global inventory of black and organic carbon emissions from combustion, Journal of Geophysical Research, Vol. 109, D14203, doi:10.1029/2003JD003697, 2004. Boucher, O., C. Moulin, S. Belviso, O. Aumont, L. Bopp, E. Cosme, R. von Kuhlmann, M.G. Lawrence, M., Pham, M.S. Reddy, J. Sciare, and C. Venkataraman, DMS atmospheric concentrations and sulphate aerosol indirect radiative forcing: a sensitivity study to the DMS source representation and oxidation, Atmos. Chem. Phys., 3, 49-65, 2003. Brenkert A., G.Marland, T.Boden, R.Andres, Olivier J., CO2 emissions from fossil fuel burning: Comparisons of 1990 gridded maps and an update to 1995. Transactions, AGU. 78:111, 1997. Brenkert, A.L.e., A. Auclair, J.A. Bedford, and C. Revenga, Northern Hemisphere Biome and Process Specific Forest Area and Gross Mechantable Volumes: 1890-1990, Carbon Dioxide Information Analysis Centre (CDIAC), Oak Ridge, Tenn., 1997. Cachier, H., C. Liousse, P. M.H, A. Gaudichet, F. Echarlar, and J.P. Lacaux, African fire particulate emissions and atmospheric influence, in Biomass Burning and Global Change,, edited by J.S. Levine, MIT Press, Cambridge, MA, 1996. Cofala, J., M.Amann, Z.Klimont and W.Schöpp, Scenarios of World Anthrop. Emissions of SO2, NOx, and CO up to 2030, in Internal report of the Transboundary Air Pollution Programme, pp. 17, http://www.iiasa.ac.at/rains/global_emiss/global_emiss.html, International Institute for Applied Systems Analysis, Laxenburg, Austria, 2005. Cofala, J., M.Amann, F.Gyarfas, W.Schöpp, J.Boudri, L.Hordijk, C.Kroeze, J.Li, Dai Lin, T.Panwar, S.Gupta, Cost-effective Control of SO2 Emissions in Asia. Journal of Environmental Management 72 (2004), pp. 149-161, 2004. Cofala, J., M.Amann, Z.Klimont, Z., Calculating Emission Control Scenarios and their Costs in the RAINS Model: Recent Experience and Future Needs. Pollution Atmosphérique, Numéro special Angers Workshop, Oct 2000, Paris, France. ISSN 0032-3632, 2000. Gong, S.L., A parameterization of sea-salt aerosol source function for sub- and super- micron particles, Global Biogeochemical Cycles, 17 (4), 1097, doi:1029/2003GB002079, 2003. Ginoux, P., et al. , Sources and distributions of dust aerosols simulated with the GOCART model, J. Geophys. Res., 106, 20,255–20,274, 2001. Ginoux, P., J. M. Prospero, O. Torres, and M. Chin, Long-term simulation of global dust distribution with the GOCART model: Correlation with the North Atlantic Oscillation, Environ. Model. Software, doi:10.1016/ S1364-8152(03)00114-2, 2003. Generoso, S., F.M. Breon, Y. Balkanski, O. Boucher, and M. Schulz, Improving the seasonal cycle and interannual variations of biomass burning aerosol sources, Atmospheric Chemistry and Physics, 3, 1211-1222, 2003. Graf H., B. Langmann and J. Feichter et al., 1998, The contribution of earth degassing to the atmospheric sulfur budget, Chemical Geology, 147, 131-145, 1998. Halmer, M., H. Schmincke and H. Graf, The annual volcanic gas input into the atmosphere, in particular into the stratosphere: A global data-set for the past 100 years. J. Volca. Geotherm. Res. 115, 511-528, 2002. Ito, A., and J. E. Penner (2005), Historical emissions of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870-2000, Global Biogeochem. Cycles, 19, GB2028, doi:10.1029/2004GB002374, 2005. Kanakidou, M., J.Seinfeld, S.Pandis, F.Dentener, M.Facchini, R.van Dingenen, B.Ervens, A.Nenes, C.Nielsen, E.Swietlicki, P.Putaud, Y.Balkanski, G.Moortgat, R.Winterhalter, C.Myhre, K.Tsigaridis, E.Vignati, E.Stephanou and W. J., Organic aerosol and climate modeling: a review, Atmos. Chem. Phys., 5,, 1053-1123, 2005. Kettle, A. J., and M. O. Andreae, Flux of dimethylsulfide from the oceans: A comparison of updated data sets and flux models, J. Geophys. Res.,105, 26,793– 26,808, 2000. Klein-Goldewijk, C. and J.Battjes, A hundred year (1890 - 1990) database for integrated environmental assessments (HYDE, version 1.1). Report no. 422514002, National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands, 1997. Le Canut, P., M.Andreae, G.Harris, F.Wienhold and T.Zenker, Airborne studies of emissions from savanna fires in southern Africa, 1, Aerosol emissions measured with a laser optical particle counter, J. Geophys. Res., 101, 23615-23630., 1996. Nightingale, P., G.Malin, C.Law, A.Watson, P.Liss, M.Liddicoat, J.Boutin and R.Upstill-Goddard, In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers, Glob. Biogeochem. Cy. 14, 373-387, 2000. Olivier, J., J.Berdowski, J.Peters, J.Bakker, A.Visschedijk, and J.Bloos, Applications of EDGAR including a description of EDGAR V3.0: reference database with trend data for 1970-1995, NRP Report, 410200 051, RIVM, Bilthoven, The Netherlands, 2002. Olivier, J. and J.Berdowski, EDGAR 3.2 by RIVM/TNO, Global emission sources and sinks. In: J. Berdowski, R. Guicherit and B.J. Heij (eds.), The Climate System: 33-77. Lisse: Swets & Zeitlinger Publishers, 2001. Olson, J.S., J.A. Watts, and L.J. Allison, Major World Ecosystem Complexes Ranked by Carbon in Live Vegetation, Carbon Dioxide Information Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee., 1985. Pham, M, J.-F. Mueller, G. Brasseur, C.Granier and C.Megie, A three-dimensional study of the tropospheric sulfate cycle, J. Geophys. Res. 100, 16445-16490, 1995. Putaud, J., R.van Dingenen, U.Baltensberger, E.Brueggemann, A.Charron, M.C.Facchini, S.Desceari, S.Fuzzi, R.Gehrig, H.C.Hansson, R.Harrison, A.Jones, P.Laj, G.Lorbeer, W.Maenhaut, N.Mihalolpoulos, K,Mueller, F.Palmgren, X.Querol, S.Rodriguez, J.Schneider, G.Spindler, H.ten Brink, P.Tunved, K,Torseth, E,Weingartner, A.Wiedersohler, P.Waehlin, F.Raes, A European Aerosol Phenomenology, physical and chemical characteristics of particulate matter at kerbside, urban, rural, and background sites in Europe, Report EUR 20411 EN, European Commission, Ispra, Italy, 2002 (http://ies.jrc.cec.eu.int/Download/cc) Putaud, J., F. Raes, R. Van Dingenen, and et al., A European aerosol phenomenology--2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe, Atmospheric Environment, 38, 2579-2595, 2004. Radke, L., D.Hegg, P.Hobbs, J.Nance, J.Lyons, K.Laursen, R.Weiss, P.Riggan, and D.Ward, Particulate and trace gas emissions from large biomass fires in North America, in Global Biomass Burning: Atmospheric, Climatic and Biospheric Implications, edited by J.S. Levine, pp. 209- 224, MIT Press, Cambridge, Mass., 1991 Randerson, J.T., G.R. van der Werf, G.J. Collatz, L. Giglio, C.J. Still, P. Kasibhatla, J.B. Miller, J.W.C. White, R.S. DeFries, and E.S. Kasischke, Fire emissions from C-3 and C-4 vegetation and their influence on interannual variability of atmospheric CO2 and delta(CO2)-C-13, Global Biogeochemical Cycles, 19 (2), -, 2005. Scholes, R., J.Kendall, and C.Justice, The quantity of biomass burned in southern Africa, J. Geophys. Res., 101, 23,667-23,676, 1996. Susott, R., D.Ward, R.Babbitt, and D.Latham, The measurement of trace emissions and combustion characteristics for a mass fire, in Global Biomass Burning: Atmospheric, Climatic and Biospheric Implications, edited by J.S. Levine, pp. 245-257, MIT Press, Cambridge, Mass., 1991. Textor, C., H..Graf, C.Timmreck and A.Robock, Emissions from volcanoes, in Emissions of Chemical Compounds and Aerosols in the Atmosphere, pp. 269-303, Kluwer, Dordrecht, The Netherlands, 2004. van Aardenne, J., F. Dentener, J. Olivier, C. Klein Goldewijk and J. Lelieveld, A 1 x 1 degree resolution dataset of historical anthropogenic trace gasi emissions for the period 1890-1990. Global Biogeochemical Cycles, 15(4), 909-928, 2001. van der Werf, G.R., J.T. Randerson, G.J. Collatz, and L. Giglio, Carbon emissions from fires in tropical and subtropical ecosystems, Global Change Biology, 9 (4), 547-562, 2003. van der Werf, G.R., J.T. Randerson, G.J. Collatz, L. Giglio, P.S. Kasibhatla, A.F. Arellano, S.C. Olsen, and E.S. Kasischke, Continental-scale partitioning of fire emissions during the 1997 to 2001 El Nino/La Nina period, Science, 303 (5654), 73-76, 2004. van Dingenen R., F.Raes, J.Putaud et al., A European aerosol phenomenology 1: physical charcateristics of particulate matter at kerbside, urban, rural and background sites in Europe, Atmospheric Environment, 38, 2561-2577, 2004.