Volcanic SO2 emissions Contact: thomas.diehl@nasa.gov Description of the emission file The file volc_so2.nc contains volcanic SO2 emissions and other variables for all days from January 1st 1979 to December 31st 2007 for all volcanoes with historic eruptions listed in the Global Volcanism Program's database provided by the Smithsonian Institution. Subglacial and submarine volcanoes are excluded. Each element of a variable is dubbed an "event", where an event corresponds to the emission of SO2 by a specific volcano on a specific day. The order of events is as follows: ED1Vm ... ED1Vn ED2Vp ... ED2Vq ...... EDkVr ... EDkVs (with E indicating events, V volcanoes, and D days). The dimension nevents contains the total number of events. Currently, nevents=12,403,236. The following variables are provided: * vid: the standardized 8-character volcano number, which can be used in data processing for identification purposes. * vname: the volcano name as provided by the GVP database; this variable is for informational purposes only and should not be used in data processing, since it contains non-ASCII characters. * jdn (integer): the Julian Day Number * so2 (float): the amount of SO2 emitted by the given volcano on the given day in kt * cloud_column_height (integer): the height of the volcanic plume in m above sea level * elevation (integer): the elevation of the volcano in m above sea level * lon (float): the longitude of the volcano * lat: the latitude of the volcano The following four variables contain the grid indices of the volcanoes; they are specific to the grid of the GOCART model. Other models will typically have to compute their own indices from the provided longitude and latitude. * ic: the longitudinal grid index for a resolution of 2.5(x2.0( * jc: the latitudinal grid index for a resolution of 2.5(x2.0( * if: the longitudinal grid index for a resolution of 1.25(x1.0( * jf: the latitudinal grid index for a resolution of 1.25(x1.0( Since the inventory is constructed such that cloud_column_height = elevation for non-eruptive degassing, the SO2 emission should be placed only in the model level which contains the crater elevation for the case cloud_column_height = elevation. For all other cases, the emission should be injected into some fraction of the levels located within the plume. In the GOCART model, the SO2 emission is evenly distributed among the levels located within the top third of the plume. Methodology used for compiling the inventory Volcanoes are assigned posteruptive, extraeruptive, and pre-eruptive degassing rates depending on their eruptive state. In addition, we use the SO2 emission rates provided by Andres & Kasgnoc (1998) for 49 quasi-continuously erupting volcanoes. Additional results from observations (from the TOMS and OMI instruments and COSPEC measurements) were retrieved from the literature in a number of cases. For those days of eruptive periods without data from instruments, we compute an averaged daily emission rate from either the mass of the ejected magma (if available) and intraeruptive degassing, or from the VSI corresponding to the listed VEI and intraeruptive degassing. The plume height is derived from the VEI (for days with SO2 data from instruments) or from the mass weighted average of the VEI-based plume height and the emission height for intraeruptive degassing (assumed to be at the elevation of the crater). In some cases, the plume height is taken from measurements provided in the literature. A more detailed description of the procedure, which assigns the SO2 emissions to each volcano for each day, is given below: 1. Volcanoes with a timeframe code of D1 or D2 in the GVP database (i.e. those which had an eruption since 1900) are assigned a posteruptive degassing rate of 7.0x10-2 kt/d. All other volcanoes with historic eruptions are assigned an extraeruptive degassing rate of 6.2x10-4 kt/d. 2. These values are overwritten with the SO2 emissions listed in Andres & Kasgnoc (1998) for 49 quasi-continuously erupting volcanoes. 3. On days when the TOMS instrument provides SO2 data the entries from 1. and 2. are overwritten by the TOMS detected SO2 amount. 4. Additional results from observations (from the OMI instrument or COSPEC measurements) were retrieved from the literature for a number of cases. These values overwrite entries from 1.-3. on the available days. 5. For each eruption listed in the GVP table, the 7 days preceding the start of an eruption are assigned a pre-eruptive degassing rate of 7.5x10-1 kt/d. This step is not applied if a value was assigned for this volcano on this day in step 2, 3, or 4. 6. For the days of each eruption listed in the GVP table, an SO2 value is assigned as follows: a. No value is assigned if an SO2 value was already assigned in steps 2-4 for a specific day and volcano. b. If none of the days within the eruption period was assigned an SO2 value in 2-4, the SO2 emitted during this period is derived from the mass of the ejected magma if this quantity is available. Otherwise, the SO2 amount is derived from the VSI corresponding to the VEI listed in the GVP table for this eruption. Also, an intraeruptive degassing rate is applied to ndays-1 days in both cases (where ndays is the length of the eruption period in days), and an average daily emission rate for the whole period is calculated. c. If one or more day(s) within the eruption period were assigned SO2 values in steps 2-4, we approximate the SO2 emitted during the remainder of the eruption period by applying an intraeruptive degassing rate to ndays-odays days, where odays are the number of days within the eruptive period with assigned values from 2-4. If the mass of the ejected magma is available and if SO2magma > SO22-4, the residual SO2magma - SO22-4 is added and an average daily emission rate for the remaining days of the eruption period is calculated. The plume height is derived from the VEI for days with SO2 data from instruments. For other days, it is derived from the mass weighted average of the VEI-based plume height and the emission height for intraeruptive degassing, which is assumed to be located at the elevation of the crater. In some cases, the plume height is taken from measurements provided in the literature. Non-eruptive degassing Our rates for preeruptive and intraeruptive degassing are simply the average of the range given by Berresheim & Jaeschke (1983) for these classes of degassing: degaspre = 7.5x10-1 kt/d and degasintra = 7.5x10-1 kt/d. Preeruptive degassing is applied to the 7 days preceding the start of an eruption. We modified the rates provided by Berresheim & Jaescke for posteruptive and extraeruptive degassing, given as 1.05x10-1 kt/d and 5x10-3 kt/d, respectively. These rates were inferred (like the rates for intraeruptive and preeruptive degassing) from a small sample of volcanoes. Applying this rate to all posteruptive days of all volcanoes would probably overestimate the amount of SO2, since not all volcanoes are exhibiting this type of posteruptive degassing (or at least not on all days of their posteruptive period). Since we generally do not know the individual volcanoes which display this type of degassing, we reduce the degassing rate by the factor actualpostv/totpostv (where actualpostv is the actual (estimated) number of volcanoes displaying posteruptive degassing and totpostv is the total number of volcanoes which erupted during the past 100 years) and apply this effective rate to the posteruptive days of all volcanoes which erupted during the past 100 years. The number of 365 volcanoes given by Berresheim & Jaeschke exhibiting posteruptive degassing is most likely an overestimate, while the number of 102 provided by Stoiber et al. (1987) is probably an underestimate since they did not account for degassing without plumes, i.e. they omitted the fumarolic part of the posteruptively degassing volcanoes (see the discussion in Graf et al., 1997). In the current (as of September 2008) GVP database, 365 volcanoes had a subaerial eruption after 1900. On average, 60 volcanoes have an eruption per year (number from volcano.si.edu). Not counting the erupting volcanoes to a first approximation, we get totpostv = 305 volcanoes with potentially posteruptive degassing. Approximating actualpostv with (305+102)/2 yields 0.105x0.667 = 7.0E-2 kt/d. For the extraeruptive case, we do not have a lower boundary from observations (like the 102 volcanoes in the posteruptive case) to derive a scaling factor. Thus, we simply evenly distribute the global 0.5 kt/d from B&J onto all 807 volcanoes in the GVP database whose last eruption occurred before 1900 (excluding volcanoes for which it is uncertain whether the last eruption was in the Holocene). This yields 6.2x10-4 kt/d per volcano. Thus, the rate is only about 10% of the one in B&J (5.0x10-3 kt/d). Alternatively, this can also be interpreted as only 10% of the volcanoes, which had eruptions before 1900 in the GVP database to display extraeruptive degassing (with the unmodified rate from B&J) in our inventory. Estimation of SO2 from ejected magma In some cases, the GVP database provides volume estimates for the erupted lava and/or tephra. In these cases, we use the formula from Blake (2003) to estimate the SO2 mass released during the eruption: mSO2 [Mt] = 1.77 mmagma[Gt] 0.64 Since the provided lava and tephra volumes are bulk volumes, they must be converted to dense rock equivalent (DRE) volumes. Averaging a range of values found in the literature yields ftephra = 0.5 and flava = 0.85. For (DRE, we use 2.7 g/cm3. References: Andres, R. J.. and A. D. Kasgnoc, A time-averaged inventory of subaerial volcanic sulfur emissions, J. Geophys. Res., 103, 25251-25261, 1998. Berresheim, H., and W. Jaeschke, The Contribution of Volcanoes to the Global Atmospheric Sulfur Budget, J. Geophys. Res., 88, 3732-3740, 1983. Blake, S., Correlations between eruption magnitude, SO2 yield, and surface cooling, in Volcanic Degassing, Special Publication of the Geological Society of London No. 213, edited by C. Oppenheimer, D. M. Pyle, and J. Barclay, 177-202, Geological Society, London, UK, 2003. Carn, S. A., A. J. Krueger, G. J. S. Bluth, S. J. Schaefer, N. A. Krotkov, I. M. Watson, and S. Datta, Volcanic eruption detection by the Ozone Mapping Spectrometer (TOMS) instruments: a 22-year record of sulphur dioxide and ash emissions, in Volcanic Degassing, Special Publication of the Geological Society of London No. 213, edited by C. Oppenheimer, D. M. Pyle, and J. Barclay, 177-202, Geological Society, London, UK, 2003. Graf, H.-F., J. Feichter, and B. Langmann, Volcanic sulfur emissions: Estimates of source strength and its contribution to the global sulfate distribution, J. Geophys. Res., 102, 10727-10738, 1997. Newhall, C. G., and S. Self, The Volcanic Explosivity Index (VEI): An Estimate of Explosive Magnitude for Historical Volcanism, J. Geophys. Res., 87, 1231-1238, 1982. Schnetzler, C. C., G. J. S. Bluth, A. J. Krueger, and L. S. Walter, A proposed volcanic sulfur dioxide index (VSI), J. Geophys. Res., 102, 20087-20091, 1997. Simkin T, Siebert L (2002-). Global Volcanism FAQs. Smithsonian Institution, Global Volcanism Program Digital Information Series, GVP-5 (http://www.volcano.si.edu/faq/), 2008. Stoiber, R. E., S. N. Williams, and B. Huebert, Annual Contribution of Sulfur Dioxide to the Atmosphere by Volcanoes, J. Volcanol. Geotherm. Res., 33, 1-8, 1987.